
90

Chapter 15 - A USING Instruction Tutorial

Introduction

One of the most challenging concepts encountered by students of IBM Assembler Language is
that of the USING assembler instruction, or directive. It doesn' t generate any object code
itself, but it directly influences how machine instructions are assembled. It is a promise by the
programmer that certain register(s) will be available at execution time, and so determines
which base registers and displacements are chosen by the assembler when converting implicit
addresses.

The most common application of USING is in program addressability. The following bit of
code is fairly typical (although not necessarily recommended):

 1 MAIN CSECT
 2 STMINST STM 14,12,12(13) Save regs; note explicit base (13)
 3 USING MAIN,15 R15 will have A(MAIN) at execution
 4 LAINST LA 14,SAVEAREA Get address of new save area
 5 ST 13,4(,14) and save back pointer in new area
 6 ST 14,8(,13) and forward pointer in previous
 7 LR 13,14 Set new save area pointer
 8 BALR 12,0 Get address of next inst into R12,
 9 DROP 15 say we no longer have need of R15,
10 USING PART1,12 and tell assembler our new promise
11 PART1 B SAVEAREA+18*4 Remainder of program follows
12 SAVEAREA DC 18F'-1'
 ...

This bit of code has two USING instructions, one for location MAIN and one for location
PART1. The first USING, at statement 3, is a promise that, no matter where the program is
loaded at execution time, register 15 can be expected to contain the address of the first
instruction of the program. This information is used only during the assembly of the implicit
address (of SAVEAREA) in the LA instruction at statement 4, in order to construct the object
code of statement 4 with a valid base (R15) and displacement.

The second USING, at statement 10, is a promise that R12 will have the address of PART1 at
execution time. Note that this promise will be fulfilled when, at execution time, the BALR
instruction at statement 8 is executed.

Two definitions which will be very helpful in describing what follows are the domain and the
range of a USING instruction.

! The domain of a USING instruction begins where the USING instruction appears in a
program, and it continues until the end of the program, except when:
" A subsequent DROP instruction specifies the same base register
" A subsequent USING instruction specifies the same register

91

! The range of a USING instruction is the 4096 bytes within a Control Section (CSECT)
beginning at the base address specified in the USING

In order for the assembler to convert implicit addresses to base/displacement, any instruction
which refers to an implicit address must be situated within the domain of a USING whose
range includes the referenced location.

Here is the same bit of code with domains and ranges indicated:

 1 MAIN CSECT <-|
 2 STMINST STM 14,12,12(13) |
Domain of |-> 3 USING MAIN,15 |
USING at | 4 LAINST LA 14,SAVEAREA | Range of USING at
Stmt 3 | 5 ST 13,4(,14) | Statement 3 (up
 | 6 ST 14,8(,13) | to 4096 bytes)
 | 7 LR 13,14 |
 | 8 BALR 12,0 |
 |-> 9 DROP 15 |
Domain of|-> 10 USING PART1,12 |
USING at | 11 PART1 B SAVEAREA+18*4 | <-| Range of USING
Stmt 10 | 12 SAVEAREA DC 18F'-1' | | at Stmt 10 (up

 V ... V V to 4096 bytes)

In the example above, the range of the USING at statement 3 begins at location MAIN and
ends at location MAIN+ 4095 (or earlier if the program is shorter than 4096 bytes). This
means that location SAVEAREA referenced in statement 4 must be located between MAIN
and MAIN+ 4095. The domain of that USING begins at statement 3 and ends at statement 9
(the DROP instruction). This means that no instructions following statement 9 can be
assembled with R15 as a base register.

Similarly, the range of the USING at statement 10 is PART1 through PART1+ 4095. Its
domain begins at statement 10, so no instruction which preceeds statement 10 can be
assembled with R12 as a base register.

Note that the STM instruction at statement 2 is not within the domain of any USING, so it
cannot have an implicit address for its second operand (which must be given explicitly, as it is
in the example). Also, since statement 2 is not within the range of the second USING, label
STMINST cannot be specified as an implicit address on any instruction following the DROP at
statement 9 (assuming only these two USINGs, of course).

It is clearly possible for USINGs to have overlapping ranges, as is the situation in the example
after Statement 10. This is unimportant, though, because the USINGs do not have overlapping
domains, and so the assembler has only one USING available for each instruction from which
to select a base register. When it happens that there are USINGs with both overlapping
domains and overlapping ranges, the assembler chooses for each implicit operand the base
register which will result in the smallest displacement. This fact is important in what follows.

92

As an aside, it is probably useful to notice that, in general, the instruction which will actually
set the promised contents of a base register need not be proximate to the corresponding
USING. In our example, the second USING almost directly follows the instruction which will
set the register, while the instruction setting the register contents promised by the first USING
is nowhere to be seen.

A Closer Look

Now, let' s examine what the assembler does when its processes this program, par ticularly how
it handles:

 4 LAINST LA 14,SAVEAREA Get address of new save area

and

11 PART1 B SAVEAREA+18*4 Remainder of program follows

Since Statement 4 lies within the domain of the USING at Statement 3, and since
SAVEAREA is within the range of that USING, R15 is an available base register. Since it is
the only register available, the assembler chooses it. Since label SAVEAREA is
4+ 4+ 4+ 4+ 2+ 2+ 4= 24= X' 18' bytes into the USING range, the instruction is assembled
as X'41E0F018' [student: verify this].

Similarly, since Statement 11 lies within the domain of the USING at Statement 10, and since
SAVEAREA+ 18*4 is within the range of that USING, R12 is an available base register.
Since it is the only base register available (R15 was DROPped), the assembler chooses it.
Since SAVEAREA+ 18*4 is 4+ 18*4= 76= X' 4C' bytes into the USING range, the
instruction is assembled as X'47F0C04C'.

All of this should be verified by the student. Nothing unusual has been done, and verification
should be straightforward. It should be clear that the reason Statement 3 is coded just so is the
expectation that R15 really will have the memory address of the first byte of program code (the
STM instruction) at the time of execution. In fact, let' s see what would happen if we lie to the
assembler and tell it something which is incorrect! Let' s change Statement 3 to pretend that
R15 will have the address of LAINST (instead of MAIN) at execution time:

 3 USING LAINST,15 R15 will have A(LAINST) at execution

Since label SAVEAREA is now 4+ 4+ 4+ 2+ 2+ 4= 20= X' 14' bytes into the USING range,
the instruction at Statement 3 is assembled as X'41E0F014'. Of course, we lied when we

wrote the new Statement 3, but the assembler didn' t know that and went ahead as though we
were telling the truth. Now the object code for statement 4 actually loads the address of four
bytes before SAVEAREA rather than SAVEAREA.

93

Our conclusion is that the assembler is very gullible! It believes whatever we tell it and then
behaves accordingly. It doesn' t know what we intend, only what we write. On the one hand,
this means we must be careful in writing our USINGs so that the assembler generates the
desired object code. On the other hand, this also means that we can trick the assembler into
generating the object code we want, in circumstances where telling the truth simply isn' t
possible. The remainder of this note describes how to fool the assembler! (Well, not really,
of course, but it helps to think of it that way.)

How Can We Use Implicit Addresses Everywhere?

Let' s consider that program MAIN above begins a typical first semester exercise for the
student of assembler. In this exercise, the student is to "process" two tables. Each table will
have, say, up to 25 entries, and each entry will have, say, two fields: name (22 characters) and
age (fullword binary), in that order. Before beginning the "process" (whatever that might be),
each table entry must be initialized so that the name is blank and the age is zero. Thus, we will
have a routine called INIT to which is passed each of the tables, in turn, for initialization: [to
simplify the code, the address of the table, rather than a parameter list, is passed]

 ...
 LA 1,TABLE1 Get address of first table
 BAL 14,INIT and pass to INIT
 LA 1,TABLE2 Do the same for the second table
 BAL 14,INIT
 ...

When INIT receives control, it does the following:
 ...
 SR 0,0 Initial age value=0
 LA 10,25 Get counter for loop (size of table)
 LR 11,1 Copy passed address of table
*
LOOP MVC 0(22,11),BLANKS *1* Set name to blanks
 ST 0,24(,11) *2* and age to zero
 LA 11,28(,11) *3* Get to next entry
*
 BCT 10,LOOP Continue until done
 ...
BLANKS DC CL22' ' Initial value for name
 ...

For the purpose of this discussion, let' s assume that the data BLANKS is located at X' 63A'
bytes into the range of the USING at statement 10 and that the LOOP code lies within the
domain of that USING. This means that the object code generated by the three statements
marked *1*, *2*, and *3* is [student to verify this]:

D215B000C63A
5000B018
41B0B01C

94

We began with fairly standard source code, except that in the marked statements the explicit
form of an operand is used, rather than the implicit form. Explicit operands were used
because, at assembly time, there is no way to promise the address to be contained in R11 at
execution time. In fact, R11 has a different address each time INIT is called!

This is correct object code, but the explicit addresses create a number of problems:

! There can be a lot of effort involved in calculating offsets and lengths
! The calculations are prone to error
! Most of all, explicit addresses are inflexible; a change to one field may mean that all

explicit addresses have to be recalculated

How much nicer it would be to write:
 ...
LOOP MVC NAME,BLANKS *1* Set name to blanks
 ST 0,AGE *2* and age to zero
 LA 11,NEXTENT *3* Get to next entry
 ...

and get exactly the same object code as with explicit operands! Well, we can, and with all this
background, it' s actually pretty easy.

The Solution: We Fool the Assembler

Our goal, no matter how we accomplish it, is to generate the correct object code. In the case
of the instruction at *1*, if we want to use NAME as the first operand, it must be at
displacement 0 from base register 11, and it must have a length of 22. For the instruction at
2, AGE must be on a fullword boundary at displacement 24 from base register 11. And for
the instruction at *3*, NEXTENT must be at displacement 28 from base register 11. If we can
do this, the same (correct) object code will be generated.

The solution has two parts. F irst, we define fields labeled as we want, in the format we want.
Let's place them just after BLANKS:
 ...
 DS 0F Assure correct boundary alignments
BLANKS DC CL22' ' Initial value for name
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
 ...

Now we trick the assembler. Since register 11 is the one we want as our base register, we tell
the assembler that at execution time R11 will have the address of NAME. This is a lie, of
course, because R11 will actually point to a table entry; but the assembler will believe us and
will generate the correct object code. Here' s what we do: adding one USING statement (and
one DROP) to our original LOOP code, we place our marked instructions in a new USING
domain (which overlaps the program USING domain established at Statement 10).

95

 ...
 SR 0,0 Initial age value=0
 LA 10,25 Get counter for loop (size of table)
 LR 11,1 Copy passed address of table to R11
* then lie to the assembler!
 USING NAME,11 Begin the domain of the lie
LOOP MVC NAME,BLANKS *1* Set name to blanks
 ST 0,AGE *2* and age to zero
 LA 11,NEXTENT *3* Get to next entry
 DROP 11 End the domain of the lie
*
 BCT 10,LOOP Continue until done
 ...
 DS 0F Assure correct boundary alignments
BLANKS DC CL22' ' Initial value for name
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
 ...

We must be careful, though; since the marked instructions lie within two overlapping USING
domains and since they refer to operands which lie within two overlapping USING ranges
(the new one begins at NAME and continues through NAME+ 4095), the assembler can
choose between base registers 12 and 11 for each implicit address which lies within the
overlapping ranges.

For the instruction marked *1*, the first operand, NAME, is at offset X' 650' in the range of
the USING at Stmt 10 (remember that BLANKS is at X'63A'), while it is at offset X' 000' in
the range of the USING just before LOOP. Therefore, following the rule mentioned at the end
of the Introduction, the assembler chooses to use the base register which gives the smallest
displacement, and the NAME operand is assembled with X' B000' as base/displacement (rather
than X' C650'). Since the definition of BLANKS lies outside the range of the new USING, the
assembler can choose only R12 and assembles the BLANKS operand of *1* as X' C63A' .
Since this is the desired object code, the lie has worked! The student should verify that *2* and
3 also assemble correctly.

The student should also notice that at no time are the storage areas defined by NAME, AGE,
and NEXTENT actually referenced! Base register R11 always has the address of a table entry
and never has the address of NAME. This fact will shortly help us take the last step in solving
our problem.

If it weren' t for the potential problem introduced by overlapping ranges, the solution would be
nearly complete. Unfortunately, overlapping ranges make it easy for errors to be introduced.
Consider what would happen if our storage areas were defined with BLANKS after, rather
than before NAME:
 ...
 DS 0F Assure correct boundary alignments
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
BLANKS DC CL22' ' Initial value for name
 ...

96

Now BLANKS lies within overlapping USING ranges and the assembler, following the
smallest displacement rule, will choose to assemble the statement marked *1* as:

D215B000B01C

which is clearly incorrect object code [student: explain why this happened]. It appears that our
lie has gotten us into trouble and we need to find a way out.

The Last Step: We Eliminate Overlapping USING Ranges

Our best bet is to find a way to define the labels we want (NAME, AGE, and NEXTENT) so
that they are outside any other possible USING range. That way, the assembler will choose
R11 as the base register only when implicitly addressing those labels. Since a USING range is
4096 bytes, we could make the program longer than 4096 bytes by inserting some large
storage areas, then placing our fields after them, perhaps just before END.

There is a better answer, though. It turns out that USING ranges are limited to addresses
within a single control section, so our last step will be to define our labels in another control
section. Here is one possibility:
 ...
BLANKS DC CL22' ' Initial value for name
 ...
ENTRY CSECT
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
*
 END MAIN

and here is another:

MAIN CSECT , Beginning of program
 ...
*
ENTRY CSECT
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
*
MAIN CSECT , Resume original control section
BLANKS DC CL22' ' Initial value for name

 . . .

In both cases, the labels NAME, AGE, and NEXTENT now lie outside the range of the
USING at Statement 10 because they are located within a different control section. The
assembler is forced to choose R12 as the base register for BLANKS in *1*, and will correctly
choose R11 as the base register for NAME. That' s it - we now generate the correct code in all
circumstances because we eliminated overlapping USING ranges by isolating our labels in a
different control section.

97

We can extend this solution to deal with situations where we want to use this trickery in
multiple places within our program. Although we avoided parameter lists earlier for simplicity,
they are the normal method to pass information to a called routine. Thus we might call INIT
with the following sequence:

 ...
 LA 1,=A(TABLE1)
 BAL 14,INIT
 LA 1,=A(TABLE2)
 BAL 14,INIT
 ...

We now add an INITPRM CSECT (defining ATABLE) and rewrite INIT as:

MAIN CSECT , Beginning of program
 ...
INIT DS 0H
 ...
 SR 0,0 Initial age value=0
 LA 10,25 Get counter for loop (size of table)
 USING ATABLE,1 Trick assembler to gen correct code
 L 11,ATABLE Copy passed address of table to R11
 DROP 1 then end USING domain for R1
*
 USING NAME,11 Begin the domain of the lie
LOOP MVC NAME,BLANKS *1* Set name to blanks
 ST 0,AGE *2* and age to zero
 LA 11,NEXTENT *3* Get to next entry
 DROP 11 End the domain of the lie
*
 BCT 10,LOOP Continue until done
 ...
*
ENTRY CSECT
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
*
INITPRM CSECT
ATABLE DS A Address of passed table
*
MAIN CSECT , Resume original control section
BLANKS DC CL22' ' Initial value for name
 ...

Now we are done! We' ve found a way to fool the assembler into generating the object code we
need in circumstances where it isn' t possible to get the result "truthfully." By eliminating
overlapping USING ranges, we' ve also assured that incorrect base registers are less likely to
be chosen. By isolating each group of storage areas associated with a "trick" in a separate
control section, we have reduced potential errors which might arise from overlapping USING
ranges in a "multiple tr ick" situation. There is only one minor, helpful but unnecessary change
left which we can make if we wish.

98

The Final Last Step: We Stop Wasting Space

We mentioned earlier that none of the storage areas created for the purpose of tr icking the
assembler is ever actually referenced or changed. This is the result of our trick, and it leaves
these storage areas doing nothing but wasting space. All they are needed for is to make it
possible for the assembler to see the offsets and lengths of the various labels.

Since the storage isn' t needed, just the labels, we can change the control sections to be dummy
control sections. Dummy control sections reserve no storage; they are simply sets of labels for
the assembler to refer to in situations such as we have created here for our trick. The savings
in storage is minimal in our example, but in "real" programs the reduction can be noticeable.

Dummy control sections are implemented by using the DSECT instruction in place of CSECT.
This would mean that our labels would be defined as follows:

 ...
*
ENTRY DSECT
NAME DS CL22 Dummy NAME field for tables
AGE DS F Dummy AGE field for tables
NEXTENT DS 0H Dummy next entry in a table
*
INITPRM DSECT
ATABLE DS A Address of passed table
*
MAIN CSECT , Resume original control section
BLANKS DC CL22' ' Initial value for name
 ...

Thus, while MAIN is a CSECT, ENTRY and INITPRM are DSECTs which take up no
storage.

Conclusion

Assembler programming can be greatly simplified by means of the USING instruction. With
the sleight-of-hand described in this note, the assembler can be convinced to generate correct
object code from implicit addresses in situations where implicit addresses might not seem
possible. By isolating labels used in the trickery into CSECTs or DSECTs, potential addressing
errors are reduced. By use of DSECTs, wasted memory is reduced.

MS, March 1998

